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STOCHASTIC MOTION DUE TO A SINGLE WAVE IN A

Gary R. Smith

MAGNETOPLASMA

Lawrence Livermore Laboratory, University of California
Livermore, California 94550 USA

ABSTRACT

A single electrostatic wave in a magnetoplasma causes stochastic ion

motion in several physically different situations. Various magnetic fields

(uniform, tokamak, and mirror) and various propagation angles with respect

to the field have been studied. A brief review of this work shows that all

situations can be understood using the concept of overlapping resonances.

Analytical calculations of the wave amplitude necessary for stochasticity

have been carried out in some cases and compared with computer and

laboratory experiments. In the case of an axisynmetric mirror field the

calculations predict stochastic motion of ions with energy below a threshold

that depends weakly on the wave amplitude and on the scale lengths of the

magnetic field. Studies with an azimuthally asymmetric field show that the

asymuetry causes substantial changes in the motion of some ions.
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I. INTRODUCTION

Considerable study has been devoted to a class of stochasticity

1-7
problems. For these problems one asks the question, “In a

magnetoplaama what effect on particle motion does a single electrostatic

wave have?” The answer, of course, is that the wave causes stochastic

motion of a certain group of particles. Characterizing this group generally

provides information useful for a practical application. One can obtain

this characterization, for all of the problems discussed in this paper,
8using the concept of overlappingresonances. The physics of the

resonancesdiffers importantlyfrom one problem to another,which leads to

different characterizationsof the stochasticallymoving particles.

In this paper I briefly discuss, in Sec. II, the various problems,

emphasizingthe physics of each problem and describingthe group of

particles that moves stochastically. In Sec. 111 I sunuuarizethe results of

a detailed study7 of ion motion in the presence of a wave in an

axisyrmuetricmirror machine. Finally, in Sec. IV I describe a model

appropriate for studies of ion motion in an azimuthally asymmetric mirror

machine.

II. PRYSICS OF THE VARIOUS PROBLEMS

The first problem is that of ion motion in a uniform magnetic field ~

with a perturbing wave that propagates either obliquelyl or
2,3

perpendicularly to ~. The ion feels oscillating electric fields at

frequencies

w - kzvz + Ml, k =0, ~1, 32, .... (1)

where w is the wave frequency,kzvz is the Doppler shi’ftdue to motion

along ~, and Q is the gyrofrequency. The different frequencies (1) enter

with weights given by the Be”sselfunctionJk(kla)~ here kl is the

perpendicular wavenumber and a is the gyroradius. For the weights to be

nonnegligible~ we need kla ? %; the important values of k are those that
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make (1) smallest in magnitude, namely L - @/$_?. Thus, we find a necessary

condition for stochasticity due to overlapping cyclotron resonances:

Expressing (2) in terms of the perpendicular velocity Vl, we have

(2)

The ions that may move stochastically are thus those with sufficiently high

perpendicular energy.

In the second problem ions with negligible gyroradius (kla << 1) move

stochastically in a tokamak magnetic field because the field strength B
4

varies with distance s along a field line. The ion feels the

electrostatic wave (e.g., a trapped-ion mode) at frequencies

(JJ -I’M n=O, ~1, :2, ....
b’

where ub is the bounce (or transit) frequency of motion along field

lines. Since ub approaches zero at the separatrix, the velocity-space

boundary between trapped and circulating ions, resonances w = nub ‘with

arbitrarily large values of n occur near the separatrix. Resonances with

adjacent values of n become extremely close together as n increases.

Consequently, due to overlap of these bounce resonances a wave of

arbitrarily small amplitude causes stochastic motion of trapped ions that

reflect sufficiently close to the point Smx where B is a maximum. An

analogous class of circulating ions also moves stochastically. These

results depend on the assumed magnetic-field property (d2B/ds2)8=%ax 4 0.

The third problem treats the motion of ions with kla = ka ? 1 in the
5-7

magnetic field of an axisymmetric mirror machine. In contrast to the

tokamak problem the shape of B(s) near s~x is irrelevant, since, in a

mirror machine, most ions are near the surface on which B(s) is a minimum

rather than a maximum. Near the minimum we can assume a parabolic well,

B(s) = Bo(l + s2/L2). The exact shape of the well is not important but the

fact that B varies with s, coupled with finite gyroradius ka L 1, is crucial

to the physics of this problem. Because ka L 1 the ion feels the

electrostatic wave, with a weight Jl(ka)j at the frequency

(J)+ “-b- s-l(t),

where tiD is the (positive)Doppler shift kvd resulting from the vB-drift

Vd, which is in the opposite direction from the (azimuthal)propagation

direction of the wave. The gyrofrequencyQ(t) = (q/Me) B[s(t)] varies about

an average value fiat twice the frequency~b of bouncing between mirrors:

.

,

.
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Q(t) = E - +; ~~g 2wbt .

The ion thus experiences a potential

[J

t
o(t) = 00 Jl(ka) cos dt’ $2(t’)- (UD +w)t 1

=’20Jl(ka) cos [(-~/4wb) sin 2~bt + (~ - ~D - ~)t]

b

= 00 Jl(ka) ~ Jp(fi/4ub)cos [(fi- 2~b -lllD-dt] . (3)

P=-m

In (3) we have retained only the k = 1 term of a sum over L that involves

J1(ka), and we have suppressed initial phases of the bounce and cyclotron

motion since these phases are unimportant for the present discussion. From

(3) we see that the ion feels oscillating electric fields at frequencies

E’- 2p~-&lD-ul

The Bessel functions J , which

(3), can be expressed !n terms

9 P =0, :1, 22, . . . . (4)

play the roles of weighting functions in

of the parallel and perpendicular kinetic

energies Wlland Wl> these energies being measured at the midplane (s = O) of

the mirror machine. The argument of J is
P

ii 1 VII w)—=- —
4(db

4 ‘1 (2WL/M)
1/2 ‘

1

(5)

where M is the ion mass, L is.the axial scale length of the magnetic field,

and Q is the ion gyrofrequency at the midplane.o A necessary condition

for stochastic motion due to overlap of resonances with adjacent values of p

is

(6)

Relations (5) and (6) allow us to characterize the class of stochastically

moving ions. These ions must have sufficiently low perpendicular energy Wlj

the required value of Wl decreasing as W1l/W1decreases. Note that

*
wll/wl= (stp/L)2 ,

where s
tp

is the turning-pointdistance, at which the ion reflects from

the mirror. The result that low-energy ions move stochastically is also

found in a more complete calculation, which is described in the next section.
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III. RESULTS ON STOCHASTICITY IN AN AXISYMMSTRIC MIRROR

A detailed treatment of stochasticity due to a wave in an
.

MACHINE

axisyumetric

mirror machine is available.’ In this section I sunmarize the results of

Ref. 7, which includes comparisons between theory and computer and

laboratory experiments.

Theoretical work on stochasticity due to a wave in a mirror-machine

plasma is motivated by data from the 2XIIB experiment at Lawrence Livermore

Laboratory.g Measurements of electric potential fluctuations suggest that

a single wave, which grows to large amplitude as an instability, propagates

azimuthally in the plasma. The wave is described by a frequency u and a

wavenumber k that are unique and time independent.

Reference 7 studies the slab-model problem motivated by the 2XIIB

experiment. An ion moves in a magnetic field

,.
IJ(x,z)= BO[(l + z2/L2 + X/Rg)Z - (2xz/L2)1] , (7)

where L and Rg are the axial and radial

motion is perturbed by an electrostatic

‘$= @O COS (ky + Ut) .

scale lengths of the field. The

wave with potential

(8)

The analytical work of Ref. 7 begins with a Hamiltonian describing

motion in field (7) and wave (8). Introduction of appropriate canonical

variables allows one to express the Hamiltonian in the form

H(=,u;$,J)= HO(!.I,J)+ q@O Jl(ka)~ Jp(~/4ub) cos (~- 2P+) ,
P

(9)

—
where (~,u) and (@fJ) are conjugate pairs of variables. The

time-independent, two-degree-of-freedom Hamiltonian (9) represents a

considerable simplification from the original time-dependent problem of

three degrees of freedom. Considering each term of the sum on p separately,

we can reduce (9) to a set of pendulum Hamiltonians

KP(X,PX) = (Px - Po) 2 G + qoo Jl(ka) Jp(i/4~) cos X , (lo)

where pO and G, which depend on the integer p, give the location of

resonance p and the effective mass for motion near it. The widths of the

resonances follow immediately from (10). The finite-width resonances are

illustrated in Fig. 1 for Ipl :2 and a set of parameters suggested by 2XIIB

data. Where adjacent resonances touch, we find points on the stochasticity

boundary. For points in the WIIW1plane below this boundary, ion motion is

stochastic; above the boundary, motion is nonstochastic or, in mirror-theory

terminology, superadiabatic.
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Fig. 1. Plot of finite-width reson-

ances in the WIIW1plane, showing

three points at which adjacent reson-

ances touch. The resonances are

labeled by values of p. Parameters

are w = Q
o
= 2.8 X 107 S-l,

L = 60 cm, R = 30 cm, q~o =
g

100 eV, k = 1 cm-l, and M = the

mass of the deuteron.

’11– ‘e”

The predictions of the overlapping-resonances theory have been

verified by numerical calculations of ion trajectories in magnetic field (7)

and electrostatic wave (8). The trajectories separate into two classes as

shown in Fig. 2, in which the kinetic energy of the ion is plotted in time.

In Fig. 2(b) a low-energy ion shows the erratic, aperiodic behavior

associated with stochasticity. In Fig. 2(a) two superadiabatic

trajectories, both showing periodic variation of the kinetic energy, are

plotted. Of the two superadiabatic trajectories the lower-energy one

exhibits larger, slower excursions of the kinetic energy because in this

case the ion motion is dominated by the p = -1 resonance; the higher-energy

trajectory shows

the resonances.

smaller, faster excursions because the ion is near none of

> 15 -
4

2
I

Fig. 2. Plots of kinetic energy

versus time for the two types of

ion trajectories: (a) super-

adiabatic, and (b) stochastic.

Parameters are the same as in

Fig.1. Att=O, z=Oand

WI!Iwl = 0.25.
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Fig. 3. Ion positions in the W,lW,

plane whenever z z

trajectories shown

II J.

O for the three

in Fig. 2.

0.1 0.3 1 3 10

WI, – keV

Figure 3 illustrates the same three trajectories as in Fig. 2 by

plotting the ion position in the WIIW1plane whenever the ion passes the

midplane z = O. The superadiabatic trajectories, labeled 1 and 2! remain

near their initial points on the plot, while the stochastic trajectory,

labeled 3, visits regions of velocity space far from its initial point.

Comparison between the overlapping-resonances theory and the

trajectory calculations is shown in Fig. 4. From results like those in

Figs. 2 and 3, the numerically determined stochasticity boundary is drawn

using a solid curve. From Fig. 1 theoretically determined points on the

boundary are plotted, and the points are joined by straight lines. The

third boundary, drawn with a dashed curvef is determined by applying a

100: t I 1 , I , , , I 1 I I , !

Fig. 4. Stochasticity boundaries

in the WIIW1plane~30 - computed by the

> method of overlapping resonances
&

I 10 ~ Superacliabatic (curve connecting four points), by
3“

the mapping method (dashed curve),

and by numerical trajectory calcu-

lations (solid curve). Parameters

1. 1 I 1 I 1I11I I I 1 11I1,
0.1 0.3 1 3 10 are the same as in Fig. 1.

’11– ‘ev
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Fig. 6. Perpendicular energy W1~

as a function of wave frequency u.

:L--d
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W/a.

slightly extended version of the mapping method used by Rosenbluth5 and by

Timofeev.6 In this method one reduces the equations of motion to the
8

standard mapping of Chirikov, for which the stochasticity boundary is

known from previous work.

After validation of the overlapping-resonances theory by comparison

with numerical trajectory calculations, the theory is used to determine how

the stochasticity boundary varies with parameters. In Figs. 5 and 6 are

shown the parametric dependence of Wls, defined as the value of Wl on the

stochasticity boundary at Wll= 2 keV. For these figures one parameter was

varied ~ile the others were fixed at the values used in Figs. 1 through 4.
. .

‘e ‘arlat=On ‘f ‘1s with wave amplitude

Fig. 5. In Fig.
.

6 ‘e ‘ee ‘ow ‘1s ‘arles

dependence of Wls on the magnetic-field

weak and are shown in Ref. 7.

The results of Ref. 7 force one to

00 is rather weak, as shown in

with wave frequency u. The

scale lengths

the following

the 2XIIB experiment. If the theory models all of the

the experiment, then in 2XIIB ions move stochastically

perpendicular kinetic energy is less than about 8 keV,

superadiabatically otherwise. Certain observations in

contradict this conclusion, and motivation thus arises

Rg and L are very

conclusion regarding

important features of

if their

and they move

2XIIB apparently

to improve the

theoretical model. Such an improvement is described in the next section.
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Iv. MODEL FOR STOCHASTICITY STUDIES IN AN ASYMMETRIC MIRROR MACHINE

The slab-model magnetic field (7) used in Ref. 7 is a reasonable

description of an axisymmetric mirror machine. However, most mirror

experiments, including 2XIIB, involve a magnetic field with azimuthal

asymnetry due to a quadruple component of the field. Breaking of the

azimuthal symmetry splits the frequencies (4) felt by an ion and leads to

the doubly infinite set

E- P’:b-md-u $ p’,n = (1,:1, :2, ..O . (11)

In (11), ud
—

is the azimuthal drift frequency, Ub is the bounce frequency
——

averaged over the drift motion, and Q is the gyrofrequency averaged over

both the bounce and drift motion. The large number of resonances associated

with (11) seems likely to cause stochasticity more readily than in the

axisymetric case.

A suitable model magnetic field is10

A . A
~(z,r,9) = f(z)z - r(% f’ - g cos 2e)r - rg sin 2e e , (12)

where g is a constant giving the strength of the quadruple field and

f(z) = Bo(l + z2/L2). Field (12) can be expressed as ~ = Va x V6, where the

Euler potentials a and B are

a ‘%r2f(z) [cosh C(Z) - cos 2e sinh c(z)I

6 = tan‘1 {exp [c(z)I tanel

c(z) = (2gL/Bo) tan-l(z/L) .

Guided by theoretical results on mirror-machine microinstabilities, I

choose the model

@(c%,B,t)= 00 Am[R(a)] cos (m~ + ~t) (13)

for the potential due to the wave. In (13) 00 is a constant giving the

peak potential, the argument of Am is

where cio

“radial”

and m is

R= (a/ao)l/2

is the value of a

shape function is

Y

at which the potential is greatest, the

Am(x) = (m+ l)xm (1 +mxW1)-l ,

the azimuthal mode number.

.

,
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s4Fig. 7. Plot of kinetic energy

versus time for an ion moving in a

b1 quadruple field of strength given

I by gL/BO = 2. The values of u,

‘o‘ ‘$ ‘o’
and M are close to the

values used for Figs. 1 through 4.

The mode number m is 7, and

a.=a(r =7cm, z=O).

o 103

sot

Ion trajectories in field (12) and wave (13) with the quadrupole-

strength parameter g equal to zero reproduce the results of Ref. 7. With

values of g comparable to those used in 2XIIB, we observe trajectories

qualitatively different from the g = O trajectories. For example, the

trajectory shown in Fig. 7 exhibits large, aperiodic excursions in the

kinetic energy between the relatively high values of 9 and 16 keV. We are

presently investigating the question of whether the quadruple field alters

the stochasticity boundary found in Ref. 7.

This work was performed under the auspices of the U.S. Department of

Energy by the Lawrence Livermore Laboratory under contract number

W-7405-ENG-48.
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